
Architectural Considerations for Highly Scalable
Computing to Support On-demand Video Analytics

George Mathew
Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, MA 02420, USA
George.Mathew@ll.mit.edu

Abstract—The processing demands on video analytics calls
for special design considerations to achieve scalability. Numerous
factors influence the running time of an analytic job. The time
consumed for raw computing can be improved by well-
engineered approaches to execute certain sub-tasks. High
scalability can be achieved by selectively distributing
computational components. We elucidate such factors that aid
scalability and present design choices for architecting them. The
principles outlined in this research were used to implement a
distributed on-demand video analytics system that was
prototyped for the use of forensics investigators in law
enforcement. The system was tested in the wild using video files
as well as a commercial Video Management System supporting
more than 100 surveillance cameras as video sources. The
architectural considerations of this system are presented. Issues
to be reckoned with in implementing a scalable distributed on-
demand video analytics system are highlighted. The bottlenecks
and possible solutions are also touched upon.

Keywords—video analytics; on-demand video intelligence;
intelligent video system; video analytics platform

I. INTRODUCTION

Video Analytics systems has been of tremendous interest in
various fields due to its utility [1]. A survey of Intelligent
Video Systems and Analytics [2] highlights the importance of
such systems in a variety of domains. The richness of
information in video data is invaluable for surveillance and
forensics. Without the help of a video analytics system, a
forensics investigator has to manually sift through large
amounts of video clips, which is a tedious and error prone
activity [3]. Video Analytics systems fall into two general
categories: real-time and on-demand. In real-time systems, the
analytics is run continuously on the video data feed. For
example, edge cameras can be designed to run real-time
analytics [4]. These systems are typically designed for real-
time surveillance [5, 6]. However, many investigative analytics
are performed on video clips in (recent) history. On-demand
video analytics systems provide the capability to execute
analytics on an as and when needed basis on any video source
for a specific day/time period from the past. The focus of this
work is on-demand video analytics systems. There are two
sources of videos available to an on-demand system. One is
video files and the other is Video Management Systems
(VMS’s). Video files are typically stored in mp4 or similar
formats on disks and directly accessible for video analytics.

Citizens contributed videos account for a good number of law
enforcement investigative artifacts and hence the significance
of video files. VMS’s are mostly commercial systems that
manage 100’s of edge cameras. For the use of an analytic, the
video clip for a specific time period has to be accessed
programmatically through the VMS using an SDK provided by
the commercial vendor.

The Video Analytics System targeted in this work is meant
to support multiple users, multiple video sources and multiple
analytics. A Video Analytics System can be centralized or
distributed in nature. A centralized system can perform only
within the limits of its computing resources. Vertical scaling
hits the ceiling within the computing power of a single server.
To go beyond that, horizontal scaling is necessary and hence
we embrace a distributed architecture. To emphasize the scale
of the system under consideration, in the rest of the paper, we
will use the term Video Analytics Platform (VAP) instead of
Video Analytics System.

The essential components of the on-demand VAP is shown
in Fig. 1. The system does not run analytics on the edge
cameras; instead, all analytics are run inside the platform itself.

Fig. 1. Components of the On-demand Video Analytics Platform

The working of the VAP in a nutshell is as follows: A user
logs in, chooses the video sources of interest and runs analytics
on specific time spans on those video sources. The results are
stored in the VAP for review and annotations. The user can
organize the results and review them as necessary.

II. SCALABILITY FACTORS

User access controls in VMS systems have to be respected
by the VAP. Within a VMS, each user is granted permissions
to a set of cameras. For obvious security reasons, the VAP

should not by-pass this access control. Consequently, users
should have single sign-on into VAP using the VMS’s as
identity providers. The single sign-on is also significant due to
the fact that the VMS SDK’s require a logged in user ‘session’
to fetch video frames for the analytic. If multiple analytics are
run concurrently, multiple connection sessions have to be
maintained by the VAP. Consequently, for a highly scalable
VAP, a ‘session broker’ is needed for the management of
connection sessions. In our implementation, the ‘session
broker’ was implemented as a Video Service that ran on a
dedicated server for scalability. A related scalability factor is
concurrent video frames pulled from VMS. Table I shows the
average time for seeking through video frames in 500
milliseconds intervals on cameras with varying resolutions
from a VMS.

TABLE I. AVERAGE SEEK TIMES OVER 500MILS INTERVAL

Camera
Resolution

Avg. seek time for a frame over concurrent processes

1 process 2 processes 3 processes 5 processes

1920x1440 2.32 secs 2.36 secs 2.41 secs 2.46 secs

1280x960 0.74 secs 0.77 secs 0.79 secs 0.79 secs

480x360 0.22 secs 0.22 secs 0.22 secs 0.23 secs

When multiple analytics are run concurrently, each analytic

will need to seek to video frames of interest. Table I shows the
worst case scenario in continuously seeking through frames
concurrently via independent processes. In reality, an analytic
will seek a frame, process it and take necessary action before
the next frame is fetched. For scalability, there are some
options. If the VMS SDK is thread-safe, it is possible to run a
specific analytic pass in its own thread. If not, running each
analytic pass in a separate process is an option. As can be
surmised from values in Table I, this option has slight
performance penalty. Another option for non-thread-safe SDK
is to cache ahead the next frame sought while the current frame
is being analyzed.

The video sources should have permanent unique
identifiers in a VAP. The top-down hierarchy for video sources
in the VAP is: VMS → Recorder → Cameras. For the VAP,
we tagged the VMS level a ‘site’. The recorder level is similar
to a ‘group’. Each recorder assigns a unique id for a camera
(which is not necessarily unique across recorders). Capturing
the essence of this format into a label for each camera is
necessary for scalability. Also, to maintain consistency with
this structure, the File collections have to be organized into
‘sites’ for various file servers, ‘groups’ for folders (or
directories) and a uniquely generated id as ‘camera id’ for each
file. This gives a unique string representation for each
file/camera in the format <site>:<group>:<cameraId>. In our
VAP implementation, this string format for files were
generated using ‘site’ as an incrementing positive integer,
‘group’ and ‘camera id’ as GUID’s [7].

VMS’s maintain metadata about the edge cameras. To
maintain consistency, video files loaded into the VAP should
capture a minimal set of metadata for each file. In our
implementation, the following minimal set of information was
captured for each video file: display name, file format, video

codec, location of the file, start time of the video and end time
of the video. From a software developers perspective, to
accommodate multiple VMS’s and Video Files in a uniform
manner, a layer of abstraction is needed in the VAP so that
analytics can make the same API call for fetching frames
independent of the underlying vendor system. In our
implementation, the interface was called ‘framegrabber’ and it
was implemented using ffmpeg [8] for video files and VMS
SDK calls for VMS. Direct Show Filter supported by most
VMS vendors is another option.

III. FACTORS INFLUENCING ANALYTICS PROCESSING TIME

With advances in high resolution cameras comes the side
effects of bigger video frames and higher processing delta. As
can be gathered from Table I, bigger frames of higher
resolution cameras result in more latency to retrieve frames. If
downsampling [9] is supported on the VMS side, it is possible
to request frames at a lower resolution for faster frame
retrieval. One of the analytics we use in the VAP is video-
summarization [10]. This tool creates video summary views
with time compression rates up to the 1000’s. For practical
time calculations, it can be considered a single pass analytic;
i.e., it can process the frames for the duration of the video clip
in succession from the beginning in one pass. Using video-
summarization, the time to capture frames from the VMS and
time for processing the frames in a single thread as relative
percentages across 3 different cameras (with resolutions as in
Table I) are shown in Fig. 2.

Fig. 2. Split up of time for an anlytic run

It is observed from this graph that irrespective of the
camera resolution, approximately 75-85% of the analytics time
is spent in capturing video frames. Given the fact that
concurrent fetching of frames add only little penalty (from
Table I), a possible solution to reduce run time of an analytic is
to split the video into multiple clips and run the analytic on
each clip and converge the results. This requires an
‘orchestrator’ component to manage the split and merge. Note
that this may not be an option for certain analytic. In those
cases where the split-n-mere strategy will work, the individual
split video clips have to be processed concurrently. To improve
overall processing time, it will be advantageous to run each
slice processing on a computing node. Obviously when
multiple concurrent jobs are scheduled on same node, the
turnaround time for each job increases. This is another reason
for having multiple computing nodes. A video analytic job is
comprised of the algorithm processing part and the results
processing part (for rendering results). In our implementation

project, we used the term ‘compute node’ for an algorithm
processing node and ‘transform node’ for a results processing
node. For scalability, the architectural design for instrumenting
compute/transform nodes have to take into consideration
various factors, which are addressed in the next section.

IV. COMPUTE/TRANSFORM NODES

In order to run algorithm processing on compute nodes and
results processing on transform nodes, an analytic job has to be
split into two tasks – compute task and transform task. An
‘orchestrator’ service is required to handle this. The
Orchestrator assigns job-id’s and task-id’s. Also, packaging the
parameters for the tasks is handled by Orchestrator. The
parameters for an analytics task have to be passed to a
compute/transform node in a node-independent way. In our
implementation, we used JSON [11] for encoding and passing
parameters. Since JSON is a cross-platform data exchange
format, this has the added benefit that parameters for analytics
can be passed on to multiple operating systems of choice
(windows or Linux) in a uniform fashion. This helps in running
analytics on multiple OS’s. A sample JSON payload for a
compute task from our implementation is given below:

{"Job-Id":"c620b2ac-a208-415c-99a1-cb978a0fa3bc",
"Task": {
 "Id": "2c7fa763ce2a44448130e82662a15fea",
 "Analytics": "Summarization",
 "Arguments": {
 "VideoSources": [
 {"Id":"4d13763d1607:3e1a7a2e:141",
 "DisplayName": "Bldg. C6 - West"
 }],
 "BeginTime": "2016-10-26T10:00:00",
 "EndTime": "2016-10-26T10:30:00",
 "UserProfile": {
 "Name": “user1",
 "VAPHandle": "d4f5d22d-70f0-4381-9830-cf4d5"

} } } }

The Orchestrator has to pass these parameter constructs to
the compute/transform run time. In order to make that happen,
a small footprint agent runs as a proxy for the
compute/transform runtime and when the parameters are
received, the agent bootstraps the runtime. There are 2 options
for this. One is a pull model and the other is a push model. In
the pull model, the parties poll for information. In the push
model, the parties are handed over the requisite information.

Fig. 3. Pull models for task distribution

As depicted in Fig. 3., the Orchestrator puts the task
parameters (in JSON format) in a Task pool. The agents poll
the Task pool periodically to check for new tasks coming into
the pool. A new task is executed by the first agent who picks it
from the pool. The pull model can be implemented in two
ways. In the first method, there is only one task pool shared
between compute tasks and transform tasks. Any task can be
picked up by an agent. The task can be a compute task or a
transform task. Every node can execute a compute task or a
transform task. In the other model, there are two pools of tasks:
one for compute tasks & the other for transform tasks. The
agent can listen on either one of the task pools. If it listens on
the compute (transform) task pool, it makes that node a
compute (transform) node. Essentially, this self-subscription
splits the nodes into two groups of compute and transform
nodes. The Orchestrator has to be aware of the types of pools
and put the task in the right pool. We tried both models and
chose the multi-queue pull model by dedicating a certain
number of compute nodes and a fixed number of transform
nodes. This was primarily because the transform nodes didn’t
need as much resources as the compute nodes. In our
implementation, we used RabbitMQ for the task pool; with one
message queue for compute tasks and another message queue
for transform tasks. The pull model is very flexible and
scalable. Any new node can be added to listen on the task pool
and any idle node can be removed with no loss of operation.

In the push model (see Fig. 4), a master task scheduler
assigns each task to an agent. The master task scheduler
maintains a resource pool of compute nodes and transform
nodes. The Orchestrator hands over tasks to the master task
scheduler.

Fig. 4. Push model for task distribution

The Orchestrator has to instruct the master task scheduler
which resource pool to use for a given task. The master task
scheduler maintains resource pools of nodes that are registered
as compute nodes or transform nodes. In this model, a new
node has to be registered with a resource pool. Removing a
node from the resource pool also means de-listing with the
master task scheduler. Note that it is also possible to use a
single resource pool and have all nodes run either compute or
transform tasks similar to the single-queue pull model. We
used htcondor [12] job scheduler for evaluation of the push
model.

Both pull and push models provide computing scalability.
However, the pull model is quite simple. The push model is
based on job schedulers from High Performance Computing

domain. These job schedulers have rich set of task
management capabilities. Due to the simplicity of the pull
model, in our VAP deployment in the wild, we used the pull
model. In our pull model, we also provided a mechanism for a
failed task to be put back into the Task pool for a second retry.
If the task fails on second attempt also, the job is discarded.

In order for the compute nodes and transform nodes to
exchange data seamlessly, it is necessary to have shared
storage. A simple implementation strategy is to use NAS
(Network Attached Storage) and map a common share between
windows and Linux nodes. Another implementation detail is
that the algorithm processing part of an analytics must run to
completion and save the results even if the user logs out of the
VAP or user session times out.

V. IMPLEMENTATION SPECIFICS

The implementation of our VAP was called SIGMA
(Scalable Integration of Geo-tagged Monitoring Assets). The
various components of the SIGMA environment are shown in
Fig. 5.

Fig. 5. Architecture of the implemented SIGMA platform

The frontend server hosted a web server (nginx) and the
SSO server (OpenAM). The OpenAM layer was used as a
gateway between SIGMA and the VMS for user
authentication. The backend server hosted the amqp message
queue service (RabbitMQ) and mongoDB database. A video
server maintained the session broker for user connections to
VMS’s. The Video server also had the interface for fetching
frames from video sources. Metadata for video files as well as
analytics results were stored in mongoDB. The compute nodes
and transform nodes had agents with small footprint running on
them polling the RabbitMQ for tasks to be executed. Two
queues were maintained on RabbitMQ – one for compute
agents and one for transform agents. Each user could create
workspaces to store the analytic results. Workspaces could be
shared between users. The shared storage was made available
to windows nodes as \\sigmafs\data CIFS share and to Linux
nodes as /sigmafs/data NFS mount point.

VI. CONCLUSION

The scalability of an on-demand video analytics platform
that supports multiple users, multiple analytics and multiple
video sources depends on various factors that influence

different components of the VAP. We discussed those factors
and the corresponding architectural design choices. The
implementation details of an on-demand Video Analytics
Platform implemented using these principles was outlined.
This platform was distributed in nature and comprised of
multiple service nodes including compute nodes and transform
nodes that handled different processing needs of video
analytics. The utility of the platform was demonstrated by its
deployment in the wild for law enforcement investigators using
video files and commercial VMS with more than 100 video
cameras attached. We also delved into mechanisms to improve
analytics turnaround. Areas of possible bottlenecks and
methods to overcome them were also discussed.

ACKNOWLEDGMENT

Distribution A: public release; unlimited distribution. This
material is based upon work supported by the Department of
Homeland Security Science and Technology Directorate under
Air Force Contract No. FA8721-05-C-0002 and/or FA8702-
15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Department of Homeland Security.

REFERENCES

[1] H. Liu, S. Chen, and N. Kubota, “Guest editorial special section on

intelligent video systems and analytics”, IEEE Ttrans. Ind. Inf., vol. 8,
no. 1, p. 90, Feb. 2012.

[2] L. Honghai, C. Shengyong, and K. Naoyuki, “Intelligent Video Systems
and Analytics: A Survey”, IEEE Trans. Ind. Inf., vol. 9, pp. 1222-1233,
Aug. 2013.

[3] H. Arun, B. Lisa, C. Jonathan, E. Ahmet, H. Norman, L. Max, M. Hans,
P. Sharath, S. Andrew, S. Chiao-Fe, and T. Ying, “Smart Video
Surveillance”, IEEE Signal Processing Magazine, pp. 38-51, Mar. 2005.

[4] S. Zhang, S. C. Chan, R. D. Qiu, K. T. Ng, Y. S. Hung, and W. Lu, “Om
the Design and Implementation of a High Definition Multi-view
Intelligent Video Surveillance System”, IEEE International Conference
on Signal Processing, Communication and Computing, pp. 353-357,
Aug. 2012.

[5] S. Muller-Schneiders, T. Jager, H. S. Loos, and W. Niem, “Performance
Evaluation of a Real Time Video Surveillance”, 2nd Joint IEEE
International Workshop on Visual Surveillance and Performance
Evaulation of Tracking and Surveillance, pp. 137-144, Oct. 2005.

[6] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-time
Video Analysis on an Embedded Smart Camera for Traffic
Surveillance”, 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 174-181, May. 2004.

[7] P. Leach, M. Mealling, and R. Salz, “A Universally Unique Identifier
(UUID) URN Namespace”, https://www.ietf.org/rfc/rfc4122.txt, Jul.
2005.

[8] FFmpeg – home page, https://www.ffmpeg.org, accessed Nov. 2016.

[9] V. Nguyen, Y. Tan, and W. Lin, “Adaptive downsampling/upsampling
for better video compression at low bit rate”, IEEE International
Symposium on Circuits and Systems, pp. 1624-1627, May. 2008.

[10] N. Gallo, and J. Thorton, “Fast Dynamic Video Content Exploration”,
IEEE International Conference on Technologies for Homeland Security,
pp. 271-277, Nov. 2013.

[11] E. T. Bray, “The Javascript Object Notation (JSON) Data Interchange
Format”, https://www.ietf.org/rfc/rfc7159.txt, Mar. 2014.

[12] HTCondor – Home page, https://research.cs.wisc.edu/htcondor/”,
accessed Nov. 2016.

